sciencompass

今勉強していること、これまで勉強してきたことを発信してます。英語と独語、ときどき理科について発信します。

半導体物理

【半導体物理】キャリア密度とシート抵抗

投稿日:2018年2月17日 更新日:

半導体の製造現場ではウェハのシート抵抗測定が行われています。その目的とシート抵抗に関係するキャリア密度について数式を用いながら、まとめていきます。

シート抵抗を測定する目的

半導体ウェハの評価項目の一つにシート抵抗測定があります。シート抵抗測定のタイミングとして、エピをする前に基板の抵抗を確認する場合や、エピ成長後にエピの出来栄えを確認する場合、イオン注入や保護膜形成を行った後など様々なタイミングでウェハの出来栄えをチェックするために測定が行われています。シート抵抗の値がプロセスの管理項目に使われています。

シート抵抗とキャリア密度の関係

シート抵抗とキャリア密度の関係式は次のようにあらわされます。

[math]\displaystyle R_{s} \cdot t = \rho = \frac{1}{q \cdot n \cdot \mu} [/math]

[math]R_{s}[/math]はシート抵抗、[math]t[/math]は電流の流れる半導体層の膜厚、[math]\rho[/math]は電気伝導度、[math]q[/math]は電気素量、[math]n[/math]はキャリア密度、[math]\mu[/math]はキャリア移動度をあらわします。このようにシート抵抗とキャリア密度は反比例の関係になっています。

実はシート抵抗測定だけでは足りない

ただし、実際には移動度もキャリア密度に依存しており、一般的にキャリア密度が大きくなると移動度は低下します。そのため、シート抵抗だけではキャリア密度まで算出することはできません。キャリア密度を求めるためには、ホール測定を行う必要があります。プロセスを経た後のウェハについては、ホール測定を行うこともありますが、エピ成長後など電極が形成されていない段階ではホール測定を行うことはほとんどありません。エピ成長の評価にホール測定を行うことがないのはなぜでしょうか。

ホール測定がエピの評価に使われない理由

ホール測定がエピの評価に使われない理由は、ホール測定のために金属をエピ表面に取り付ける必要があり、ウェハ表面を汚染してしまうからです。ウェハが汚染されてしまうと、プロセス工程を経た後のデバイス特性に悪影響を及ぼす可能性があります。一方、シート抵抗測定は非接触で測定することができる測定装置が市販されており、ウェハを汚染することなくシート抵抗を評価することができます。一度ホール測定によってキャリア密度と移動度、シート抵抗の関係を評価しておけば、あとはシート抵抗の値からキャリア密度と移動度を推測できるため、シート抵抗の評価だけで十分になります。

まとめ

半導体の製造現場でウェハの評価にシート抵抗測定が使われていることを紹介しました。シート抵抗測定はホール測定と違い、ウェハを汚染せずに測定できることから広く用いられています。ただし、キャリア移動度もキャリア密度に依存しているため、シート抵抗からキャリア密度を算出するためにはホール測定をする必要があります。過去にホール測定をしておけばその値をもとにシート抵抗値だけで管理することも可能になります。

以上で、シート抵抗とキャリア密度の関係についてを終わります。また次回の記事でお会いしましょう。

 

Appendix ホール測定について

ホール測定は、半導体のホール効果を測定し、キャリア密度と移動度を求める方法です。ホール効果について、図を使って説明します。

図 ホール効果を表した図。Wikipediaより[1]

図のように[math]x[/math]方向に電流[math]I_{x}[/math]を流し、[math]z[/math]方向に磁場[math]B_{z}[/math]をかけます。すると、電荷にはローレンツ力がかかり、次のようにあらわされます。

[math]\displaystyle F_{L} = q \cdot (v \times B)[/math]

電流が流れているときは電荷が平均して[math]x[/math]方向に一定の速度で移動していると考えられるので、平均速度を[math]<v_{x}>[/math]とすると、ローレンツ力は[math]y[/math]方向に平均され、

[math]<F_{L}> = -q<v_{x}>B_{z}[/math]

と表されます。

電荷はローレンツ力によって加速されます。すると、電荷は面AまたはBに移動し、[math]y[/math]方向に電場[math] E_{y}[/math] が発生します。この電場[math] E_{y}[/math] をHall電場といいます。電荷の移動はやがて平衡状態になり、平衡状態では[math]E_{y}[/math]は次のようにあらわされます。

[math]<F_{L}> + qE_{y} = -q<v_{x}>B_{z} + qE_{y} = 0[/math]

電荷が一種類の場合、[math]x[/math]方向に流れる電流は次のようにあらわされます。

[math]j_{x} = nq<v_{x}>[/math]

式から電子の速度を消すと、

[math]\displaystyle \frac{E_{y}}{j_{x}B_{z}} = \frac{1}{nq} [/math]

となります。すなわち、サンプルに印加した磁場と電流、ホール効果によって生じた電場を測定することによって、電荷の種類と密度を算出することができます。

こうして求められた結果とシート抵抗の測定結果を組み合わせて電荷の移動度を求めることができます。

引用

[1] ホール効果-Wikipedia https://ja.wikipedia.org/wiki/%E3%83%9B%E3%83%BC%E3%83%AB%E5%8A%B9%E6%9E%9C

-半導体物理
-, , ,

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

半導体物理:結晶構造について(2)

皆さんこんにちは! 半導体物理の紹介をしていきます。前回、結晶構造の基本としてブラベー格子を紹介しました。今回は、半導体として広く使われているシリコン(Si)と砒化ガリウム(GaAs)(ガリウム砒素と …

GaNパワーデバイスが実用化!-Ankerジャパンの充電器-

次世代のパワーデバイスとして注目されていたGaNパワーデバイスですが、なかなか商用化されて普及してきませんでした。ところが、ついにGaN パワーデバイスが商品化するというニュースが発表されました。 & …

HZB、ペロブスカイト/Siのタンデム構造太陽電池で、変換効率の新記録を達成

これまで太陽電池はSiやGaAsなどの半導体によって作成されており、現在までに25%まで効率が上がってきています。そんな中、次世代の太陽電池の材料として、ペロブスカイトが期待されています。ペロブスカイ …

半導体物理:結晶構造(4)

今回は、逆格子について説明します。今回の記事で、半導体物理の基礎としての結晶構造の話は最後になります。逆格子はわかりにくい内容ですが、X線回折による結晶性の評価を行う際に役立つ内容です。私も仕事でX線 …

半導体物理:結晶構造(3) ~ミラー指数~

皆さんこんにちは! 半導体物理の紹介をしていきます。前回、半導体として広く使われているシリコン(Si)と砒化ガリウム(GaAs)(ガリウム砒素と呼ぶことが多いです。)、それから最近ノーベル賞にもなった …